SET-3G[™] High-Strength Epoxy Adhesive

SET-3G Cure Schedule^{1,2}

Concrete Te	emperature	Gel Time	Cure Time
(°F)	(°C)	(minutes)	(hr.)
40	4	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

For SI: 1°F = (°C x %) + 32.

1. For water-saturated concrete, submerged concrete and water-filled holes, the cure times shall be doubled.

2. For installation of anchors in concrete where the temperature is below 70°F (21°C),

the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

SET-3G Typical Properties

	Descent	Class B	Class C	Test	
	Property	(40°–60°F)	(>60°F)	Method	
Consistency		Non-sag	Non-sag	ASTM C881	
	Hardened to Hardened Concrete, 2-Day Cure ¹	3,700 psi	3,300 psi		
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	3,850 psi	3,350 psi	ASTM C882	
	Fresh to Hardened Concrete, 14-Day Cure ²	2,750 psi	2,750 psi]	
Compressive Yield Strength, 7-Day Cure ²		13,000 psi	15,350 psi	ASTM D695	
Compressive Modulus, 7-Day Cure ²		650,000 psi	992,000 psi	ASTM D695	
Heat Deflection Temperature,	7-Day Cure ²	147°F (64°C)		ASTM D648	
Glass Transition Temperature,	7-Day Cure ²	149°F	(65°C)	ASTM E1356	
Decomposition Temperature,	24-Hour Cure ²	500°F	(260°C)	ASTM E2550	
Water Absorption, 24-Hours, 7-Day Cure ²		0.1	3%	ASTM D570	
Shore D Hardness, 24-Hour Cure ²		8	4	ASTM D2240	
Linear Coefficient of Shrinkage, 7-Day Cure ²		0.002 in./in.		ASTM D2566	
Coefficient of Thermal Expansion ²		2.3 x 10	⁵ in./in.°F	ASTM C531	

1. Material and curing conditions: Class B at 40° ± 2°F, Class C at 60° ± 2°F.

2. Material and curing conditions: 73° ± 2°F.

SET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Chamatariatia	Cumbel	Units	Nominal Anchor Diameter da (in.) / Rebar Size							
Characteristic	Symbol		<u>%</u> /#3	1/2 / #4	%/#5	34/#6	<i>‰∣</i> #7	1/#8	1¼/#10	
		Installa	ation Informa	ation						
Drill Bit Diameter for Threaded Rod	d _{hole}	in.	7/16	%16	11/16	7/8	1	11/8	1%	
Drill Bit Diameter for Rebar	d _{hole}	in.	1/2	5/8	3⁄4	7/8	1	11/8	1%	
Maximum Tightening Torque	Tinst	ftlb.	15	30	60	100	125	150	200	
Minimum Embedment Depth	h _{ef, min}	in.	23⁄8	23⁄4	31⁄8	31⁄2	3¾	4	5	
Maximum Embedment Depth	h _{ef, max}	in.	71/2	10	121⁄2	15	17½	20	25	
Minimum Concrete Thickness	h _{min}	in.	h _{ef} -	+ 11⁄4			h _{ef} + 2d _{hole}			
Critical Edge Distance	C _{ac}	in.	See footnote 2							
Minimum Edge Distance	Cmin	in.	1¾ 2						23⁄4	
Minimum Anchor Spacing	Smin	in.	1	21/2			3		6	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $c_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$, where:

 $[h/h_{ef}] \le 2.4$

 $\tau_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f'_c)^{0.5} / (\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

SIMPS

IBC

Strong-Tie

SET-3G[™] Design Information — Concrete

				1			Nominal	Rod Dian	neter (in)		
	Chan	acteristic	Symbol	Units	3%8	1/2	5%	3/4	7/8	1	11/4
-		Steel Stren	nth in Tens	ion							
Min	imum Tensile Stress Area	01001 01101	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.96
	sion Resistance of Steel — ASTM F	1554. Grade 36	1,26		4,525	8,235	13,110	19,370	26,795	35,150	56.2
	sion Resistance of Steel — ASTM F	international second			5,850	10,650	16,950	25,050	34,650	45,450	72,6
	sion Resistance of Steel — ASTM A	and the second			9,750	17,750	28,250	41,750	57,750	75,750	121,
Tens		Steel ASTM A193, Grade B8 and B8M	N _{sa}	lb.	4,445	8,095	12,880	19,040	26,335	34,540	55,2
Ten	sion Resistance of Steel — Stainles	s Steel ASTM F593 CW (Types 304 and 316)			7,800	14,200	22,600	28,390	39,270	51,510	82,3
Ten	sion Resistance of Steel — Stainles	s Steel ASTM A193, Grade B6 (Type 410)			8,580	15,620	24,860	36,740	50,820	66,660	106,
Stre	ngth Reduction Factor for Tension -	– Steel Failure	φ	-				0.755			
		Concrete Breakout Strength in Te	ension (2,5	00 psi :	≤ f' _c ≤ 8,0)00 psi)					
Effe	ctiveness Factor for Cracked Concre		k _{c.cr}	_				17			
Effe	ctiveness Factor for Uncracked Con	crete	k _{c.uncr}	-				24			
Stre	ngth Reduction Factor — Concrete	Breakout Failure in Tension	φ	-				0.655			
		Bond Strength in Tension (2,500 psi <	f'c ≤ 8	.000 psi) ⁶	5					
Min	imum Embedment	-	h _{ef.min}	in.	2%	23/4	31/8	31/2	3¾	4	5
Max	imum Embedment		h _{ef,max}	in.	71/2	10	121/2	15	171/2	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	Tk,cr	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,1
uo	ionporataro nango A	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	2,357	2,260	2,162	2,064	1,967	1,868	1,6
Continuous Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	TK,CF	psi	1,201	1,163	1,125	1,087	1,050	1,012	93
ul suo	Anabas Ostanani	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	1,957	1,876	1,795	1,713	1,632	1,551	1,3
tinu	Anchor Category	Dry Concrete						0.655			
Con	Strength Reduction Factor Anchor Category	Dry Concrete Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	Фdry,ci	_		3		°C0.U	2		
8	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	φ _{wet,ci}	-	0.	45 ⁵			0.555		_
	Tomportus Dongo A24	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,1
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	2,192	2,102	2,162	2,064	1,967	1,868	1,6
ection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,117	1,082	1,125	1087	1,050	1,012	93
Periodic Inspe		Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	1,820	1,744	1,795	1,713	1,632	1,551	1,3
riod	Anchor Category	Dry Concrete	1			2			1		
Ре	Strength Reduction Factor	Dry Concrete	ф _{dry,pi}		0.	555			0.655		
102.00	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete Water-Saturated Concrete, Water-Filled		-				3			_
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	φ _{wet,pi}	-				0.455			<u> </u>
Ked	uction Factor for Seismic Tension		$\alpha_{N,seis}^{g}$	-	1.0	0.9	1.0	1.0	1.0	1.0	1

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 160°F, Maximum long-term temperature = 110°F.

3. Temperature Range B: Maximum short-term temperature = 176°F, Maximum long-term temperature = 110°F.

4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

5. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

6. Bond strength values shown are for normal-weight concrete having a compressive strength of f'_C = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f'_G/2,500)^{0.35} for uncracked concrete and a factor of (f'c/2,500)024 for cracked concrete.

7. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

8. Characteristic bond strength values are for sustained loads, including dead and live loads.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by c_{M,seis}.

SIMPSON

Strong-Tie

SIMPS Strong-Tie

SET-3G[™] Design Information — Concrete

					0			haber Of	-		
		Characteristic	Symbol	Units	#3	#4	#5	Rebar Siz #6		#8	#10
		Steel St	rength in Te	nsion	#5	#4	#9	#0	#7	#0	#10
Mini	mum Tensile Stress Area		Ase	in.2	0.11	0.20	0.31	0.44	0.60	0.79	1.27
Tens	sion Resistance of Steel —	Rebar (ASTM A615 Grade 60)			9,900	18,000	27,900	39,600	54,000	71,100	114,30
		Rebar (ASTM A706 Grade 60)	- N _{sa}	lb.	8,800	16,000	24,800	35,200	48,000	63,200	101,60
Stre	ngth Reduction Factor for T	ension — Steel Failure	φ	-	0.755						
(979), (94	5	Concrete Breakout Strength	in Tension (2,500 psi	i ≤ f' _c ≤ 8,	,000 psi)		246.073			
Effec	ctiveness Factor for Cracke		K _{c,cr}	·				17			
Effec	ctiveness Factor for Uncrac	ked Concrete	k _{c,uncr}	3 <u></u>				24			
Stre	ngth Reduction Factor — C	Concrete Breakout Failure in Tension	φ	·				0.655			
		Bond Strength in Tens	ion (2,500 p	si≤f'c≤	8,000 ps	i) ⁶		-			
Mini	mum Embedment		h _{ef,min}	in.	2%	2¾	31⁄8	31⁄2	3¾	4	5
Max	imum Embedment		h _{ef,max}	in.	71⁄2	10	121⁄2	15	171⁄2	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete [®]	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
	emperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	2,269	2,145	2,022	1,898	1,774	1,651	1,403
	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
	emperature nange o	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	1,883	1,781	1,678	1,575	1,473	1,370	1,165
	Anchor Category	Dry Concrete	D -					1			
	Strength Reduction Factor	Dry Concrete	φ _{dry,ci}					0.655			
A	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete		-	3	3			2		
S	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	φ _{wet,ci}	-	0.4	455			0.555		
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
1	emperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	2,110	1,995	2,022	1,898	1,774	1,651	1,403
	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete [®]	τ _{k,cr}	psi	1,117	1,082	1,125	1,087	1,050	1,012	936
	emperature hange b	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	1,751	1,656	1,678	1,575	1,473	1,370	1,165
	Anchor Category	Dry Concrete	<u></u>	<u> </u>		2	1				
	Strength Reduction Factor	Dry Concrete	фdry,pi	s 	0.	555			0.655		
A	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	<u></u>					3			
S	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	φ _{wet,pi}	34 <u></u>				0.455			
Redu	uction Factor for Seismic Te	nsion	α _{N,seis} ⁹		1.0	1.0	1.0	1.0	1.0	1.0	1.0

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. Temperature Range A: Maximum short-term temperature = 160°F, Maximum long-term temperature = 110°F.

3. Temperature Range B: Maximum short-term temperature = 176°F, Maximum long-term temperature = 110°F.

4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.

5. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

6. Bond strength values shown are for normal-weight concrete having a compressive strength of f_c = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_c^2/2,500)^{0.24}$ for uncracked concrete and a factor of $(f_c^2/2,500)^{0.24}$ for cracked concrete.

7. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.

8. Characteristic bond strength values are for sustained loads, including dead and live loads.

9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{M, sels}$.

SET-3G[™] Design Information — Concrete

SIMPSON
Strong -Tie

			Nominal Rod Diameter (in.)							
Characteristic	Symbol	Units	3%8	1/2	5%	3⁄4	7/8	1	1¼	
	Steel St	rength in S	hear							
Minimum Shear Stress Area	A _{se}	in.2	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,715	4,940	7,865	11,625	16,080	21,090	33,720	
Shear Resistance of Steel — ASTM F1554, Grade 55	V _{sa}	lb.	3,510	6,390	10,170	15,030	20,790	27,270	43,605	
Shear Resistance of Steel — ASTM A193, Grade B7			5,850	10,650	16,950	25,050	34,650	45,450	72,675	
Reduction factor for Seismic Shear — Carbon Streel	$\alpha_{V,seis}{}^3$	-			0.75			1	.0	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)			2,665	4,855	7,730	11,425	15,800	20,725	33,140	
Shear Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)	Vsa	lb.	4,680	8,520	13,560	17,035	23,560	30,905	49,420	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410)			5,150	9,370	14,915	22,040	30,490	40,000	63,955	
Reduction factor for Seismic Shear — Stainless Steel	α _{V,seis} ³	<u></u> 21	0.	.80		0.75		1	.0	
Strength Reduction Factor for Shear — Steel Failure	φ	2				0.65 ²				
	Concrete Brea	kout Streng	th in Shear							
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	le	in.	Min. of h _{ef} and 8 times anchor diameter							
Strength Reduction Factor for Shear — Breakout Failure	φ					0.70 ²				
	Concrete Pry	out Strengtl	n in Shear							
Coefficient for Pryout Strength	k _{cp}	in.		1.	0 for h _{ef} < 2	2.50"; 2.0 f	for $h_{ef} \ge 2.5$	0"		
Strength Reduction Factor for Shear — Breakout Failure	φ			0.702						

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

 The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vsels} for the corresponding anchor steel type.

SIMPSON Strong-Tie

SET-3G[™] Design Information — Concrete

Characteristic	0	11-14-2	Rebar Size							
Characterisuc	Symbol	Units	#3	#4	#5	#6	#7	#8	#10	
s	teel Strength	in Shear								
Minimum Shear Stress Area	Ase	in.2	0.110	0.200	0.310	0.440	0.600	0.790	1.270	
Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)		- V _{sa} Ib		10,800	16,740	23,760	32,400	42,660	68,580	
Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	Vsa	ID.	5,280	9,600	14,880	21,120	28,800	37,920	60,960	
Reduction Factor for Seismic Shear — Rebar (ASTM A615 Grade 60)			0.60 0.8				.8			
Reduction Factor for Seismic Shear — Rebar (ASTM A706 Grade 60)	α. _{V,seis} ³	-0	1		0.60			0	.8	
Strength Reduction Factor for Shear — Steel Failure	φ	-				0.65 ²				
Concret	e Breakout S	trength ir	n Shear	w					7)	
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	l _e	in.		Min	. of <i>h_{ef}</i> and	l 8 times a	nchor diam	eter		
Strength Reduction Factor for Shear — Breakout Failure	φ					0.70 ²				
Concre	ete Pryout Str	ength in	Shear							
Coefficient for Pryout Strength	K _{cp}	in.	1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "							
Strength Reduction Factor for Shear — Breakout Failure	φ		0.702							

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to

ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

3. The values of V_{sa} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by α_{Vsels} for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/set3g.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie[®] Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

SET-3G[™] Design Information — Concrete

IBC Strain Two

30

SET-3G Development Length for Rebar Dowel

	Drill Bit	Clear Cover,		1	Development Length in. (mm))	
Rebar Size	Diameter (in.)	in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete
#3	1/2	1.125 (29)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)
#4	5%8	1.125 (29)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)
#5	3/4	1.125 (29)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)
#6	7/8	1.125 (29)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)
#7	1	2.30 (58)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)
#8	11%	2.30 (58)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)
#9	1%	2.30 (58)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)
#10	1%	2.30 (58)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)
#11	13⁄4	2.30 (58)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)

 Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in Seismic Design Category C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

2. Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_y = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by $f_y/60,000$ psi.

3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

4. Tabulated values assume bottom cover less that 12" cast below rebars ($\Psi_1 = 1.0$).

5. Uncoated rebar must be used.

*See p. 14 for an explanation of the load table icons.

6. The value of Ktr is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 319-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

SET-3G[™] Design Information — Masonry

SET-3G Epoxy Anchor Installation Information – Fully Grouted CMU Construction – Face of Wall

	0b-i	0-2-	Ne	neter / Rebar S	ize	
Installation Information	Symbol	Units	3 %" / #3	1⁄2" / #4	%" / # 5	34" / #6
Drill Bit Diameter — Threaded Rod	d _o	in.	7⁄16	9⁄16	11/16	7/8
Drill Bit Diameter — Rebar	do	in.	1/2	5%8	3⁄4	7/ ₈
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	3

SET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Top of Wall

Installation lafe metion	Cumbal	Ibiba	Nominal Rod Diameter / Rebar Size				
Installation Information	Symbol	Units -	1⁄2" / #4	% "/#5	7⁄8"		
Drill Bit Diameter — Threaded Rod	d _o	in.	9⁄16	11/16	1		
Drill Bit Diameter — Rebar	do	in.	5%8	3⁄4	-		
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3		

SET-3G Epoxy Anchor Installation Information – Ungrouted CMU Construction

h	Ormhal	11-3-	Nominal Rod Diameter		r
Installation Information	Symbol	Units –	% "	1⁄2"	%"
Drill Bit Diameter	d _o	in.	9/16	3⁄4	7/8
Embedment Depth	h _{ef,min}	in.	31⁄2	31⁄2	31⁄2

Please see the SET-3G product page at **strongtie.com** and ICC-ES ESR Report for load data. SIMPSON

Strong-Tie

IBC

IBC